Robust fault detection based on adaptive threshold generation using interval LPV observers
نویسندگان
چکیده
In this paper, robust fault detection based on adaptive threshold generation of a non-linear system described by means of a linear parameter-varying (LPV) model is addressed. Adaptive threshold is generated using an interval LPV observer that generates a band of predicted outputs taking into account the parameter uncertainties bounded using intervals. An algorithm that propagates the uncertainty based on zonotopes is proposed. The design procedure of this interval LPV observer is implemented via pole placement using linear matrix inequalities. Finally, the minimum detectable fault is characterized using fault sensitivity analysis and residual uncertainty bounds. Two examples, one based on a quadruple-tank system and another based on a two-degree of freedom helicopter, are used to assess the validity of the proposed fault detection approach.
منابع مشابه
Identification and Robust Fault Detection of Industrial Gas Turbine Prototype Using LLNF Model
In this study, detection and identification of common faults in industrial gas turbines is investigated. We propose a model-based robust fault detection(FD) method based on multiple models. For residual generation a bank of Local Linear Neuro-Fuzzy (LLNF) models is used. Moreover, in fault detection step, a passive approach based on adaptive threshold is employed. To achieve this purpose, the a...
متن کاملRobust Fault Isolation Using Non-linear Interval Observers: the Damadics Benchmark Case Study
This paper presents a passive robust fault detection and isolation approach using non-linear interval observers. In industrial complex systems there is usually some uncertainty on model parameters that can be bounded using intervals. A model with parameters bounded in interval is known as an “interval model”. Intervals observers propagate parameter uncertainty to the residual generating an adap...
متن کاملFault Diagnosis Based on Robust Observer for Descriptor-LPV Systems with Unmeasurable Scheduling Functions
This paper design a method for fault detection and isolation based on observers for systems modelled as Descriptor-Linear Parameter Varying (D-LPV) with Unmeasurable Scheduling Functions (USF). The first contribution of the paper is deal with the USF problem by transforming the into an uncertain D-LPV system with an estimated scheduling parameter. As a second contribution, a robust LPV observer...
متن کاملRobust Fault Detection on Boiler-turbine Unit Actuators Using Dynamic Neural Networks
Due to the important role of the boiler-turbine units in industries and electricity generation, it is important to diagnose different types of faults in different parts of boiler-turbine system. Different parts of a boiler-turbine system like the sensor or actuator or plant can be affected by various types of faults. In this paper, the effects of the occurrence of faults on the actuators are in...
متن کاملRobust Fault Detection Linear Interval Observers Avoiding the Wrapping Effect
In model based fault detection is very important to analyze how the effect of model uncertainty is considered when determining the optimal threshold to be used in residual evaluation. In case of model uncertainty is located in parameters (interval model), an interval observer has been shown to be a suitable strategy to generate this adaptive threshold. However, interval observers can be affecte...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2011